On the Constancy of the Characteristic Mass of Young Stars

نویسندگان

  • Bruce G. Elmegreen
  • Ralf S. Klessen
  • Christine D. Wilson
چکیده

The characteristic mass Mc in the stellar initial mass function (IMF) is about constant for most star-forming regions. Numerical simulations consistently show a proportionality between Mc and the thermal Jeans mass MJ at the time of cloud fragmentation, but no models have explained how it can be the same in diverse conditions. Here we show that MJ depends weakly on density, temperature, metallicity, and radiation field in three environments: the dense cores where stars form, larger star-forming regions ranging from GMCs to galactic disks, and the interiors of HII regions and super star clusters. In dense cores, the quantity T n that appears in MJ scales with core density as n 0.25 or with radiation density as U at the density where dust and gas come into thermal equilibrium. On larger scales, this quantity varies with ambient density as n and ambient radiation field as U when the Kennicutt-Schmidt law of star formation determines U(n). In super star clusters with ionization and compression of prestellar globules, MJ varies as the 0.13 power of the cluster column density. These weak dependencies on n, U, and column density imply that most environmental variations affect the thermal Jeans mass by at most a factor of ∼ 2. Cosmological increases in MJ , which have been suggested by observations, may be explained if the star formation efficiency is systematically higher at high redshift for a given density and pressure, if dust grains are smaller at lower metallicity, and so hotter for a given radiation field, or if small pre-stellar cores are more severely ionized in extreme starburst conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pulsating red giant and supergiant stars in the Local Group dwarf galaxy Andromeda I

We have conducted an optical long-term monitoring survey of the majority of dwarf galaxies in the Local Group, with the Isaac Newton Telescope (INT), to identify the long period variable (LPV) stars. LPV stars vary on timescales of months to years, and reach the largest amplitudes of their brightness variations at optical wavelengths, due to the changing temperature. They trace stellar populati...

متن کامل

LINEAR PULSATION CHARACTERISTICS OF MIRA VARIABLE STARS

The linear adiabatic pulsation-periods of Mira variable stars have been derived. Approximately 2701[1]models were calculated for M = 0.7 MΘ to 2 MΘ stars with radii from 180 RΘ to 340 RΘ and luminosities from 2800 LΘ to 10,000 LΘ. The chemical composition of all models is (X,Z) = (0.7,0.02). From the result of this study, linear relations on Luminosity-Period-Mass relationship and luminosity-pe...

متن کامل

THE EFFECT OF COSMIONS ON THE STABILITY OF MAIN SEQUENCE STELLAR CORES

We have studied the effect of hypothetical Cosmions on the core stability of main sequence stars (of populations I and II). Cosmions, with a mass of 4-10 Gev/c2 and a scattering cross section with nucleons of approximately 10-36 cm2 could prevail in transporting heat in the stellar cores. Raby [17] showed the existence of a local thermal instability caused by the presence of Cosmions in the sol...

متن کامل

Forty Years of X-Ray Binaries

In 2012 it was forty years ago that the discovery of the first X-ray binary Centaurus X-3 became known. That same year it was discovered that apart from the High-Mass X-ray Binaries (HMXBs) there are also Low-Mass X-ray Binaries (LMXBs), and that Cygnus X-1 is most probably a black hole. By 1975 also the new class of Be/X-ray binaries was discovered. After this it took 28 years before ESAs INTE...

متن کامل

The effect of variation of stellar dispersion velocities by the galactic latitude in interpreting gravitational microlensing observations

Our galaxy is a spiral galaxy and its stars are mostly in a thin disk and rotate around the galactic center. The vertical component of the dispersion velocity of stars is a function of the galactic latitude and decreases with increasing it. In the galactic Besancon model, this dependence is ignored and they just consider the dependence of dispersion velocity on the stellar age. Becanson model i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008